
Abstract— Approximate computing is one of best suited
efficient data processing for error resilient applications, such as
signal and image processing, computer vision, machine learning,
data mining etc. Approximate computing reduces accuracy which
is acceptable as a cost of increasing the circuit characteristics
depends on the application. Desirable accuracy is the threshold
point for controlling the trade off, between accuracy and circuit
characteristics under the control of the circuit designer. In this
work, the rounding technique is introduced as an efficient method
for controlling this trade off. In this regard multiplier circuits as a
critical building block for computing in most of the processors have
been considered for the evaluation of the rounding technique
efficiency. The impact of the rounding method is investigated by
comparison of circuit characteristics for three multipliers. These
three multipliers are the conventional Wallace tree accurate
multiplier, DRUM [4] the recently proposed approximate
multiplier and the rounded based approximate multiplier
proposed in this work. Simulation results for three selected
technologies show significant improvement on the circuit
characteristics in terms of power, area, speed, and energy for
proposed multiplier in comparison with their counterparts. Input
data rounding pattern and the probability of the repetition for
rounded values has been introduced as two essential items to
control the level of the accuracy for each range of the data with
minimum cost on the hardware.

Keywords—Data Processing, Digital Arithmetic, Approximate
computing, Energy efficient, Hi-performance, Rounding Technique.

I. INTRODUCTION

Rounding technique is one of the most efficient methods for
packing the input data before processing. This method has a
potential to improve the circuit characteristics such as power and
energy consumption, speed and area which is suitable method
for the approximate computing. Approximate computing works
very well to most of error resilient applications in the field of
computer vision, image processing, pattern recognition, signal
processing, scientific computing, and machine learning. Over
past decade, research on these areas has given lots of
opportunities in research. A multiplier is a fundamental block of
computation and one of the most resource-consuming operation.

We see innumerable research on this front with a significant
tradeoff on accuracy and power-delay-energy. Fundamental
building blocks of the multiplier are partial product generation,
partial product reduction, and packing. This paper proposes
rounding technique as a new method for input block prior to
partial product generation. Accuracy curve as a criteria plays a
critical role in controlling and minimizing the error range to be
considerable depending on applications. Different algorithms
are implemented on different levels of multiplier blocks. Input
block has a rounding technique for both 16bit and 32bit based
on accuracy levels. Generated partial products are divided into
either active or inactive partial products. Inactive partial
products are all zeros and hence are not needed to be considered
in the reduction process with compressors. This reduces the
number of partial products for compression significantly.
Compression of active partial products which takes most of the
time, has been diminished and it has good impact on the circuit
delay. Compressed output block contains both accurate
compressor block and OR gates based approximate compressors
to preserve its accuracy and minimize the hardware. The rest of
the paper is organized as follows: section II represents related
works, section III explains the proposed design of approximate
multiplier, section IV Error analysis on rounding technique,
simulation result analysis is on section V, then accuracy analysis
is presented in section VI, and finally section VII contains the
conclusion.

II. RELATED WORKS

Major research in approximate multipliers has mainly relied
on reducing partial products or truncating it. There are different
techniques for the implementation of approximate computation,
which can be classified into two types: techniques at the
hardware level with less accurate and highly efficient energy
components; and software-level techniques that reduce
calculations or accesses to memory to improve performance at
the expense of precision in the results. Recently, a high-speed
energy efficient multiplier based on rounding of the inputs in the
form of 2n has been proposed in [1]. This approach dramatically
improved the speed and the energy consumption (up to 65%)

Priyanka Lohray
Electrical & Computer Eng. Dept.

Texas Tech University
Lubbock, Texas, USA

Priyanka.Lohray@ttu.edu

Satwik Gali
Electrical & Computer Eng. Dept.

Texas Tech University
Lubbock, Texas, USA
Satwik.Gali@ttu.edu

Srirathan Rangisetti
Electrical & Computer Eng. Dept.

Texas Tech University
Lubbock, Texas, USA

Srirathan.Rangisetti@ttu.edu

Tooraj Nikoubin
Electrical & Computer Eng. Dept.

Texas Tech University
Lubbock, Texas, USA

Tooraj.Nikoubin@ttu.edu

Rounding Technique Analysis for Power-Area &
Energy Efficient Approximate Multiplier Design

978-1-7281-0554-3/19/$31.00©2019 IEEE

0420

since the computationally intensive part of the multiplication
was omitted. When looked at hardware level, [2] presents a
hardware architecture with reconfigurable kernels and
overflow-resilient limiter. There are several methods in the
recent literature that relax a single part of a computing system
(e.g., a functional unit [3]) for improved design. Authors in [4]
proposed an approximate multiplier design with an error
distribution reducing the propagation delay and improving the
energy efficiency. None of the research focused on
preprocessing data before computation. This paper presents a
method of rounding input data before approximate multiplier
design and shows a significant reduction in power, area, delay
and energy.

III. PROPOSED DESIGN OF APPROXIMATE MULTIPLIER

A. Block diagram

The main idea behind the proposed approximate multiplier
is to make use of rounded input for multiplication. Proposed
algorithm applies a rounding technique before passing the data
to the partial product generation. Fig. 1 shows the design chart
for realization of the proposed method for the approximate
multiplier design. Among the two inputs (Multiplicand and
Multiplier), the Multiplier is rounded first by passing through
rounding block. Before the multiplication operation starts, the

sign bit of both inputs is stored, and the output sign of the
multiplication result based on the inputs signs are determined.
At the last stage, the proper sign is applied to the result. In an
event of multiplying negative numbers, the respective input
blocks are converted into their 2’s complement.

In conventional multipliers, with N-bit input, N × N partial
products (partial products) are generated. But in the rounding
technique, the partial products generated are the combination of
active and inactive partial products. The active partial products
are, that have "1" as the coefficient on the Multiplier. After
rounding, it causes a complete row of Multiplicand as the result.
Therefore, inactive partial products are the lines with whole 0’s.
Therefore, has no necessity to cover them in the reduction
process.

B. Input Rounding

Fig. 1: 16-bit Block diagram of the algorithm

Fig. 2: Position error curve (16-bit)

TABLE 1: ROUNDING ALGORITHM (16-BIT)

Accurate Bit
Position

Approximate Bit
 Position

bit0 bit1
bit1 bit1
bit2 bit1
bit3 bit4
bit4 bit4
bit5 bit4
bit6 bit7
bit7 bit7
bit8 bit7
bit9 bit10

bit10 bit10
bit11 bit10
bit12 bit13
bit13 bit13
bit14 bit15
bit15 bit15

0001 0011 1000 1000A =

0000 0011 1111 1111B =

0000 0100 1001 0010Br =

Leads to active partial product rows

147101315

Fig. 3: An example after rounding ‘B’ (16-bit)

0421

Rounding input data requires major responsibility in
maintaining the accuracy. With a basic intuition, it can be stated
that, rounding lower bits results in less error compared to
rounding higher bits. Thus, the proposed algorithm has assigned
rounding weights with respect to the bit position value. From
fig. 2, proposed method shows 16-bit position error curve that
gives less weight to lower bits and more weight to higher bits.
There is a small error gap between accurate bit position and
rounded bit position. For every accurate bit, there is a
corresponding rounded bit value assigned as seen in Table 1.
Error gap reduces as the bit position value increases. Fig. 3 gives
an example where ‘A’ and ‘B’ are inputs and input ‘B’ is
rounded to get ‘Br’. "Rounding Technique" basically checks for
a ‘1’ in the ‘X’ bit position and assigns ‘1’ to the respective ‘Y’
bit position with or without a small error.

C. Partial product Reduction

Partial products reduction is a stage where partial products
are compressed using different kind of compressors. Proposed
algorithm gives a flexibility on reducing number of partial
products rows. For an instance 16-bit design shown in Fig. 6
reduces partial products to 6 rows which is identified as active
partial products. Like all traditional way, N-bit inputs are
multiplied to generate N × N Partial products. In terms of
computation complexity, as the number of bits increases, the
length of Partial products increases with O(N²). Proposed
algorithm provides computation complexity ≤ O(N×6) for 16-
bit and ≤ O(N×13) for 32bit. For better understanding, along
with design, an example is explained with input values A, B and
Br (from fig. 6(right)). Multiplier input ‘B’ is first rounded to
‘Br’. Inputs are then multiplied to get N×N partial products. Due
to rounding of multiplier input, N×N partial products is a
combination of active and inactive partial products. Multiplier
with ‘1’ as coefficient, after rounding, causes a complete row of
Multiplicand as a result as illustrated in fig. 6. Therefore,
inactive partial products are the whole zero values line which
had "0" as the coefficient on the Multiplier. Thus, there is no
need to cover them in the reduction process. In fact, inactive
partial products could only increase hardware. This has led us to
first eliminate, all inactive partial products before packing. This
approach plays important role in reducing power, area and time
usage and in turn increasing its efficiency. The active partial
products are compressed and packed using three stages of
compression. In the 1st stage, partial products are compressed
using full adders and half adders. An output of 1st stage
compression is further compressed using a 4:2 compressor when
inputs are 16bit whereas for 32bit, 9:2 compressor. Fig. 6 (right)
illustrates corresponding operations on an example. An output
of the 2nd stage compressor is finally packed using OR gate to
get a final product. Conventionally full adders are used instead
of OR. The very idea of using OR gate instead of full adder is to
reduce area and energy usage noticeably.

IV. ROUNDING ERROR ANALYSIS

As seen in previous sections, only one Input (Multiplier) is
rounded. As an instance let us consider 16-bit multiplier to
analyze rounding error. From given inputs Multiplicand and

Multiplier, Multiplier input is rounded. For 16-bit values
ranging from 0 to 65535, a set of rounded values are obtained
using rounding algorithm as discussed in fig. 2 from section III.
Fig. 4 plots the relationship between rounded values and its
occurrences. The step design obtained, shows how close the
rounded values are with each other. Most of the places, step
sizes are small which infers as lesser error and hence more
accuracy. Only in one case, we see higher step size which may
incur slightly higher error. This emphasizes us efficient data
processing is done before the multiplication to mainly work on
this area with a few additional hardware to obtain better
accuracy. Thus, with this thorough analysis, a process. We then
calculated the probability of occurrence of rounded values for
numbers ranging from 0 to 65535. Red lines in fig. 4, shows
very good analogy on how rounded values are distributed with
its probabilities. Area until 9360 rounded values have lower

Fig. 4: Rounding Pattern and Probability of repetition (16-bit)

TABLE 2: ROUNDED VALUES AND THEIR OCCURRENCES RATE

Rounded
value

(DEC)

of
Occurrence of

Rounded
value

Rounded
value

(DEC)

of
Occurrence of

Rounded
value

Rounded
value

(DEC)

of
Occurrence of
Rounded value

0 1 8338 1029 33936 1029
2 7 9216 21 33938 7203

16 7 9218 147 40960 9
18 49 9232 147 40962 63

128 7 9234 1029 40976 63
130 49 9344 147 40978 441
144 49 9346 1029 41088 63
146 343 9360 1029 41090 441
1024 7 9362 7203 41104 441
1026 49 32768 3 41106 3087
1040 49 32770 21 41984 63
1042 343 32784 21 41986 441
1152 49 32786 147 42000 441
1154 343 32896 21 42002 3087
1168 343 32898 147 42112 441
1170 2401 32912 147 42114 3087
8192 3 32914 1029 42128 3087
8194 21 33792 21 42130 21608
8208 21 33794 147
8210 147 33808 147
8320 21 33810 1029
8322 147 33920 147
8336 147 33922 1029

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

3.E+04

4.E+04

4.E+04

5.E+04

0 18 14
4

10
26

11
52

11
70

82
08

83
22

92
16

92
34

93
60

32
77

0
32

89
6

32
91

4
33

80
8

33
92

2
40

96
0

40
97

8
41

10
4

41
98

6
42

11
2

In
pu

tv
al

ue
s

Rounded values

Rounding Pattern and Probablity of repetition
(16-bit)

Rounded values # of Occurences

0422

probability which gives higher accuracy. Also, area from
rounded value 40960 onwards also have lesser probability. Area

at the center, with higher probability gives an opportunity to
change rounding pattern to get better accuracy. Further studies
and research will be mainly focusing on these areas to optimize
algorithm with the expense of extra hardware. Table 2 provides
number of occurrences of rounded values against input values.

V. SIMULATION ERROR ANALYSIS

 Power, Area, and Delay are calculated using design compiler
on three different technologies (32nm, 45nm, and 90nm) for both
16-bit and 32-bit. Fig. 7 clearly shows that the proposed algorithm
is better than other algorithms. It is compared with DRUM [4] and
accurate multiplication using 32nm, 45nm, and 90nm. Table 3
shows the Area-Power-Delay comparable readings using design
compiler. The result seen in table 3 reveals that, area usage is
reduced by 45% (85%) for 16-bit(32-bit) inputs. Power usage has
reduced significantly to 30% (5%) when compared to accurate
100% (100%) and DRUM [4] for 16- bit(32-bit).

16-bit
Multiplicand 16-bit

Multiplier
No Change in
Multiplicand Rounded

Multiplier

16-bit
Active
Partial

Products

32-bit Active
Partial Product

padded with
zeroes

Active
Partial

Product

Stage 1
Compressors

Stage 2
Compressors

Stage 3
Compressing
using OR gate

Final
Product

OR the 2nd
stage

outputs

Inactive
Partial

Product
0001 0011 1000 1000

0000 0000 0000 0000

0000 0000 0000 0000
0000 0000 0000 0000

0001 0011 1000 1000
0000 0000 0000 0000

0000 0000 0000 0000
0001 0011 1000 1000

0000 0000 0000 0000
0000 0000 0000 0000

0001 0011 1000 1000
0000 0000 0000 0000

0000 0000 0000 0000
0000 0000 0000 0000

0000 0000 0000 0000
0000 0000 0000 0000

4

7

10

1

Leads to active
partial product

rows and
converted to 32bit

size

0000 0000 0000 0000 0010 0111 0001 0000
0000 0000 0000 0001 0011 1000 1000 0000
0000 0000 0000 1001 1100 0100 0000 0000
0000 0000 0100 1110 0010 0000 0000 0000

0000 0000 0000 1000 1101 1011 1001 0000
0000 0000 0000 0001 0010 0100 0000 0000
0000 0000 0100 1110 0010 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

Compressed
using half
adder and
full adder
based on

inputs

Sum 1

Sum 2

Carry 1

Carry 2

0001 0011 1000 1000A =

0000 0011 1111 1111B =

0000 0100 1001 0010Br =

147101315

0001 0011 1000 1000A =

0001 0011 1000 1000
0001 0011 1000 1000

0001 0011 1000 1000
0001 0011 1000 1000

0000 0000 0000 0000
0000 0000 0000 0000

16-bit Active Partial
Products

0000 0000 0100 1111 1111 1111 1001 0000
0000 0000 0000 0000 0000 0000 0000 0000

Compressed
using 2

input OR
Gate

Sum 3
Carry 3

0000 0000 0100 1111 1111 1111 1001 0000

Product
Fig. 6: Multiplier Design (left) with an example (right) (16-bit).

Outputs of Final stage of compressors
(OR Gate)

3:2 Compressor (Full Adders)

2:2 Compressor (Half Adders)

Directly assigned to output.

4:2 Compressor

Input

Rounded Input

Inactive Partial product (zeros)

Active Partial product (Non - zeros)

Outputs of Stage 1 compressors

Outputs of Stage 2 compressors

Fig. 5: Labels for fig. 6.

0423

TABLE 3: AREA-POWER-DELAY COMPARISON FOR 16-BITS & 32-BITS (NORMALIZED)

16-bit 32-bit

32nm 45nm 90nm 32nm 45nm 90nm

µm² Norm µm² Norm µm² Norm µm² Norm µm² Norm µm² Norm

A
re

a

Accurate 3130.29 100.00 4830.97 100.00 11669.29 100.00 8725.01 100.00 13427.14 100.00 42684.82 100.00

DRUM 1795.78 57.37 2756.19 57.05 6762.70 57.95 3342.50 38.31 5143.53 38.31 12451.74 29.17

Proposed Al. 1844.83 58.93 2618.22 54.20 6453.96 55.31 1349.25 15.46 1924.60 14.33 5679.82 13.31

 mW Norm mW Norm mW Norm mW Norm mW Norm mW Norm

P
ow

er
 Accurate 0.34 100.00 3.53 100.00 6.70 100.00 1.23 100.00 13.09 100.00 26.28 100.00

DRUM 0.15 45.77 1.34 37.92 2.32 34.63 2.32 18.93 1.74 13.34 2.93 11.18

Proposed Al. 0.12 35.45 1.03 29.36 2.12 31.72 0.07 5.40 0.44 3.42 1.03 3.94

 ns Norm ns Norm ns Norm ns Norm ns Norm ns Norm

D
el

ay
 Accurate 4.32 100.00 3.67 100.00 11.60 100.00 7.22 100.00 5.65 100.00 37.11 100.00

DRUM 5.76 133.33 4.48 122.07 13.99 120.60 9.72 134.63 7.91 140.00 24.27 65.40

Proposed Al. 2.85 65.97 2.17 59.13 6.77 58.36 6.66 92.24 5.20 92.04 21.79 58.72

 pJ Norm pJ Norm pJ Norm pJ Norm pJ Norm pJ Norm

P
D

P
 Accurate 1.46 100.00 12.96 100.00 77.72 100.00 8.88 100.00 73.96 100.00 975.25 100.00

DRUM 0.86 61.03 6.00 46.29 32.46 41.77 22.55 25.49 13.76 18.68 71.11 7.31

Proposed Al. 0.34 23.39 2.24 17.36 14.35 18.51 0.44 4.98 2.29 3.15 22.44 2.31

(a) Area Comparison (b) Delay Comparison

(c) Power Comparison (d) PDP Comparison
Fig. 7 (a) (b): Characteristic comparison of proposed algorithm and DRUM [2] in comparison with conventional accurate multiplier for 16 and 32-bit with three

selected technologies (Power (mW), Area (µm²), Delay (ns), Energy (fJ))

0

10

20

30

40

50

60

70

80

90

100

16-bit
32nm

16-bit
45nm

16-bit
90nm

32-bit
32nm

32-bit
45nm

32-bit
90nm

Normalized Area Comparison

Accurate DRUM Proposed Algorithm

0

20

40

60

80

100

120

140

16-bit
32nm

16-bit
45nm

16-bit
90nm

32-bit
32nm

32-bit
45nm

32-bit
90nm

Normalized Delay Comparison

Accurate DRUM Proposed Algorithm

0
10
20
30
40
50
60
70
80
90

100

16-bit
32nm

16-bit
45nm

16-bit
90nm

32-bit
32nm

32-bit
45nm

32-bit
90nm

Normalized Power Comparison

Accurate DRUM Proposed Algorithm

0
10
20
30
40
50
60
70
80
90

100

16-bit
32nm

16-bit
45nm

16-bit
90nm

32-bit
32nm

32-bit
45nm

32-bit
90nm

Normalized PDP Comparison

Accurate DRUM Proposed Algorithm

0424

The results also indicate that, delay is as low as 60% (60%)
when compared to accurate 100% (100% for 16-bit(32-bit).

VI. ACCURACY ANALYSIS

Table 4 shows, randomly chosen 5 sets of small and large
values whose accuracy curves are as shown in fig. 8. ‘A’ is a
Multiplicand and ‘B’ is a Multiplier. Multiplication result of
proposed algorithm is compared with DRUM [4] and Accurate
Multiplication. Results of randomly chosen sets shows
comparable to other algorithms. But as seen in fig. 4 above,
there are few areas where results of proposed algorithm may not
be near to other algorithms. This increases an opportunity to
modify rounding pattern based on required accuracy.

VII. CONCLUSION

Proposed algorithm proves to be best in terms of power-area-
delay and PDP efficiency when compared to other algorithms
for both signed and unsigned data (16-bit and 32-bit). This is the
primary investigation of rounding technique on approximate
multiplier by having one method of rounding pattern which are
fixed active partial product rows (as seen in fig. 2 and Table 1).
With this rounding pattern, we see potential areas of less
accuracy and areas with better accuracy corresponding to
probability of rounding value (fig. 4 and Table. 2). Based on
accuracy required, rounding patterns are changed with a little
extra expense of hardware. Rounding pattern can be modified
to have fixed or dynamic partial product rows and yet have
fewer active partial product rows for compression. The proposed
algorithm can be used in the wide range of applications in image
processing, machine learning and signal processing. Thus,
different weights based on the bit position of ‘1’ plays an
important role to keep accuracy relatively near to the

conventional method. With flexible reduction of partial
products, proposed algorithm produces great hardware
characteristics, when compared to DRUM [4]. As future work,
rounding patterns will be optimized based on required accuracy
and different compression techniques.

REFERENCES
[1] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, M. Pedram,

"RoBA multiplier: A rounding-based approximate multiplier for high-
speed yet energy-efficient digital signal processing", IEEE Trans. Very
Large-Scale Integer. (VLSI) Syst., vol. 25, no. 2, pp. 393-401, Feb. 2017.

[2] M. Van Leussen, J. Huisken, L. Wang, H. Jiao, J. P. De Gyvez,
"Reconfigurable Support Vector Machine Classifier with Approximate
Computing", 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). IEEE, pp. 13-18, jul 2017.

[3] Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, Massoud Pedram,
LETAM, Computers and Electrical Engineering, Science Direct, v.63 n.C,
p.1-17, October 2017

[4] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A Dynamic Range
Unbiased Multiplier for approximate applications,” IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 418-
425, Nov. 2015.

[5] Bharat Garg, G, K Sharma: Low Power Signal Processing via
Approximate Multiplier for Error Resilient Applications, 11th International
Conference on Industrial and Information System (ICIIS), pp. 546-551,
2016.

[6] H.Bessalah, K.Messaoudi, M.Issad, N.Anane, M.Anane: Left to Right
Serial Multiplier for Large Numbers on FPGA, Proceedings of the 2009
IEEE International Conference on Mechatronics Malaga, Spain, pp. 1-6,
April 2009

[7] A. Kahng and S. Kang, “Accuracy-configurable adder for approximate
arithmetic designs,” in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pp. 820–825, june 2012.

TABLE 4: EXAMPLES OF MULTIPLIER WITH SMALL AND LARGE VALUES (16-BIT)

Samples
Small values Large values

1 2 3 4 5 1 2 3 4 5

A 1000 153 2000 4000 213 13932 5000 20496 6500 35732

B 3 15 15 15 1023 127 1023 1023 8191 8191

Accurate 3000 2295 30000 60000 217899 1801944 5242768 23980320 57521864 268435160

DRUM 3024 2340 30240 60480 213696 1774080 5031936 21159936 52641792 243597312

Proposed Al. 2000 2482 32672 65344 229370 1769364 5115000 20967408 53241500 292680812

Fig. 8: Accuracy curve for small values (left) and large values (right) of table 4.

0425

